If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x-200+x^2=0
a = 1; b = 12; c = -200;
Δ = b2-4ac
Δ = 122-4·1·(-200)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{59}}{2*1}=\frac{-12-4\sqrt{59}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{59}}{2*1}=\frac{-12+4\sqrt{59}}{2} $
| –12y+15=3 | | -3+6n=-3-n | | 2y+8=-5-8y | | 50+90=2x+10 | | 7/2x-10=7(0.5x-10) | | 0.25x^2+6x+36=0 | | 32=-2(m+5)+m | | x-7-4x=9-x | | 91=-7(3m-1) | | 5.19+0.5y=-4.7y-7.29 | | 2x2+3x+1=28 | | c^2=5^2+12^2 | | 1+4x=6x+5+2 | | x+1.1=3.6 | | 10+13y=-81 | | x+2x+2x+500=40000 | | x+5.3=12.8 | | 34=2(6,5)+2l | | X^2-7x+31=0 | | 45=4x+11 | | 116x=3x | | (2p+5)=(3p) | | x-5.9=13.7 | | x+2.8=9.1 | | 13m-7-10m=2 | | 3y+21=42 | | 2x*2+6=-34 | | 5(32-0.89x)=6.34 | | 2(x-6)=1× | | -q-9=6-7q+9q | | x-2.7=6.5 | | -6+3m=-m+5m |